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A quantum  algorithm is known that solves an unstructured  search  problem in a number of it- 
erations of order &, where d is the dimension of the search space, whereas  any  classical  algorithm 
necessarily  scales as O(d) .  I t  is shown  here that an improved  quantum search algorithm  can  be 
devised that exploits the structure of a tree search  problem  by nesting this standard search  algo- 
rithm.  The number of iterations required to find the solution of an  average instance of a constraint 
satisfaction problem  scales as 0, with a constant a < 1 depending  on the nesting depth and the 
problem  considered.  When  applying a single  nesting  level to a problem  with constraints of size 2 
such as the graph  coloring  problem, this constant a is estimated to be  around 0.63 for average 
instances of maximum  difficulty. This corresponds to a square-root speedup  over a classical  nested 
search algorithm, of which our  presented  algorithm is the quantum counterpart. 

PACS numbers:  03.67.Lx,  89.70.+c ' KRL preprint MAP-225 

I. INTRODUCTION 

Over  the  past  decade  there  has been steady progress  in the  development of quantum  algorithms. Most attention 
has focused on  the  quantum  algorithms for  finding the factors of a composite  integer [l,2] and for finding an  item  in 
an  unsorted database [3,4]. These successes have  inspired  several  researchers to look  for quantum  algorithms  that  can 
solve other  challenging  problems,  such as decision  problems [5] or combinatorial  search  problems [6], more efficiently 
than  their classical counterparts. 

The class of NP-complete  problems  includes the  most  common  computational  problems  encountered in  practice [7]. 
In  particular,  it  includes  scheduling,  planning,  combinatorial  optimization,  theorem  proving,  propositional  satisfiability 
and  graph  coloring.  In  addition to their  ubiquity,  NP-complete  problems  share a fortuitous  kinship:  any  NP-complete 
problem  can  be  mapped  into  any  other  NP-complete  problem  using  only  polynomial  resources [7]. Thus,  any  quan- 
tum  algorithm  that  speeds  up  the  solution of one  NP-complete  problem  immediately  leads to equally  fast quantum 
algorithms for a11 NP-complete  problems (up  to  the polynomial  cost of translation).  Unfortunately,  NP-complete 
problems  appear  to be even harder  than  the  integer  factorization  problem.  Whereas, classically, the best  known 
algorithm for the  latter  problem scales  only  sub-exponentially [8], NP-complete  problems  are widely  believed to be 
exponential [7]. Thus,  the  demonstration  that  Shor's  quantum  algorithm [1,2] can  factor  an integer  in a time  that is 
bounded by a polynomial  in the "size" of the integer  (;.e., the  number of bits needed to represent that  integer), while 
remarkable,  does  not lead to a polynomial-time  quantum  algorithm for  NP-complete  problems, the existence of  which 
being  considered as highly improbable [9]. Moreover, it  has proven to be very difficult to  adapt Shor's  algorithm to 
other  computational  applications. 

By contrast,  the  unstructured  quantum  search  algorithm [3,4] can  be  adapted  quite  readily to  the service of solving 
NP-complete  problems. As a  candidate  solution to  an NP-complete  problem  can  be  tested for correctness  in  polynomial 
time, one  simply  has to  create  a  "database"  consisting of all possible candidate  solutions  and  apply  the  unstructured 
quantum search algorithm.  Unfortunately,  the  speedup afforded  by this  algorithm is  only O ( f l )  where N is the 
number of candidate  solutions to be tested. For a typical  NP-complete  problem in which one  has to find an  assignment 
of one of b values to each  of p variables,  the  number of candidate  solutions, b p ,  grows  exponentially  with p .  A classical 
algorithm would therefore take a time O ( b P )  to find the solution  whereas  the  unstructured quantum search algorithm 
would take O(bPl2) .  Although  this is an impressive speedup,  one would still like to  do  better. 

While  there is now good  evidence that for unstructured  problems,  the  quantum  search  algorithm is optimal [9-11]. 
these  results  have  raised  the  question  of  whether  faster  quantum  search  algorithms  might  be  found for problems that 
possess structure [6,12-141. It so happens  that  NP-complete  problems have such structure in the sense that one  can 
often  build up  complete  solutions  (i.e., value assignments for all the  variables) by extending  partialsolutions  (i.e., value 
assignments for a subset of the  variables). Thus,  rather  than  performing  an  unstructured  quantum  search  amongst all 
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t,he crtntlidnte solut,ions. i n  a11 NP-colnpiete proI~I t~I l l l  we can perfortu a quantll1n search amongst  the p t r r t t c d  solutions 
i n  order to narrow the subsequent quantum senrrh anlongst t,hcir descendants. This is the appr,oacll presented i n  this 
paper  and which allows 11s to find a  solution  to an NP-conrplete  problem i n  a time  that grows, 0.n average,  as O(h“”’) 
for the  hardest problems, where a < 1 is a constrtnt  depending on the problem  instance  considered. 

Our improved quantum search  algorithm works by nesting one quantum search wi th in  another. Specifically, by 
performing  a quantum search at a  carefully selected level in the  tree of partial  solutions, we can  narrow  the effective 
quantum search amongst  the  candidate  solutions so that the  net computational cost is minimized. The resulting 
algorithm is the  quantum  counterpart of a classical nested search  algorithm which scales as O(P’‘),  giving  a  square 
root speedup overall. The nested  search  procedure  mentioned here corresponds to a single level of (classical or 
quantum) nesting,  but  it  can be extended  easi1y.to  several  nesting levels. Thus, our result  suggests  a systematic 
technique for translating  a nested classical search algorithm  into  a  quantum  one, giving rise a  square-root  speedup, 
which can  be useful to accelerate efficient classical algorithms  (rather  than  a  simple  exhaustive  search, of no practical 
use). We believe this technique is applicable in all structured  quantum searches. 

The  outline of the  paper is as follows. Section I1 introduces  a  simple classical tree  search algorithm  that  exploits 
problem structure  to localize the search for solutions  amongst  the  candidates.  This is not  intended to be a  sophisticated 
classical tree  search algorithm,  but  rather is aimed at  providing  a  baseline  against which our quantum  algorithm can be 
compared. In  Section 111, we outline  the  standard  unstructured  quantum search algorithm [3,4]. We focus especially 
on  the  algorithm based on an  arbitrary  unitary search operator [15], as this is a key for implementingquantum  nesting. 
Finally,  Section IV describes the  quantum  tree search algorithm based on  nesting, which is a  direct  quantum  analog 
of the classical search algorithm  appearing in Section 11. The  quantum search algorithm  with several levels of nesting 
is also briefly discussed. We conclude by showing that  the expected time to find a solution  grows as O(bafi/2),  that 
is, as  the  square  root of the classical time for problem  instances in the  hard region. The  constant a ,  depending  on 
the problem  considered, is shown to decrease  with an increasing  nesting depth (;.e., an increasing number of nesting 
levels). 

11. NESTED  CLASSICAL  SEARCH ON STRUCTURED  PROBLEMS 

A.  Structured  search in trees 

Many hard  computational  problems, such as propositional  satisfiability, graph coloring,  scheduling,  planning,  and 
combinatorial  optimization,  can  be regarded as examples of so-called “constraint  satisfaction  problems”.  Constraint 
satisfaction  problems  consist of a  set of variables, each having  a  finite  set of domain values,  together  with  a  set of logical 
relations (or “con~traints~~)  amongst  the variables that  are required to hold simultaneously. A solution is defined by a 
complete  set of variable/value  assignments  such that every variable has some  value,  no  variable is assigned conflicting 
values, and all the  constraints  are satisfied. 

In such  constraint  satisfaction  problems,  there is often  a  degree of commonality between different non-solutions. 
One  typically  finds, for example,  that  certain  combinations of assignments of values to a  subset of the variables  are 
inconsistent  (;.e.,  violate one or more of the  constraints)  and  cannot, therefore, participate in any  solution.  These 
commonalities  (several  non-solutions  sharing  the  same  ancestor that is inconsistent)  can  be  exploited to focus the 
search  for  a  solution. Thus,  a classical structured search algorithm  can find a  solution to  a  constraint  satisfaction 
problem in fewer steps  than  that required by a  unstructured search by avoiding regions of the search  space that 
can  be  guaranteed to be devoid of solutions. Before investigating  whether  the  problem  structure  can be exploited 
in a  quantum search (see Sec. IV), we need to  understand  the  circumstances  under which knowledge of problem 
structure h a s  the  potential to be useful, classically. The key idea is that one  can  obtain  complete  solutions  to  a 
constraint  satisfaction problem by systematically  extending  partial  solutions,  i.e.  variable/value  assignments that 
apply  only to a  subset of the variables in the  problem.  Not all partial  solutions  are  equally  desirable however. A 
partial  solution is “good” if it is consistent  with  all the  constraints  against which it may be tested. Conversely a 
partial  solution is “nogood” if it violates  one or more  such constraints.  Sophisticated search algorithms work by 
incrementally  extending  good  partial  solutions  and  systematically  terminating  nogood  partial  solutions.  This  induces 
a  natural tree-like structure  on  the search space of partial  solutions. 
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[.'I( ; .  L .  ( 'm1st.raint satisfaction prot)Ierr~ ill  which we must  find arl assignment to  the p variables 1 ' 1 ,  . C L ,  . ' X , , .  :\s it11 example, 
we pict,Ilre t , h e  g m p h  colortng prohlerrr. in  which we have to assign  one of h possible colors to  each  node of a grnk)ll so that every 
pair of nodes that  are  connected  directly  have different colors;' The corresponding  search  tree is characterized by a depth p 
ancl n branching  ratio 6. By looking a t  partial  solutions a t  level I i n  the  tree  (the  search  space  being of size h ' )  and considering 
ordy the clescenclants a t  level 11 of  these  partial  solutions,  one  avoids  having  to  search  through the  entire  space  at  the  bottom 
of the  tree  (of size h"). 

To give a  concrete  example of a  tree  search  problem, we consider the graph coloring  problem as  pictured in Fig.  1. 
We have a  graph  that consists of p nodes  connected by e edges,  with 0 5 e 5 p ( p  - 1)/2. Each  node  must  be assigned 
a color (out of b possible  colors), so that any  two  nodes  connected by an edge have different  colors.  More  generally, 
for a  constraint  satisfaction  problem, we are given a  set of p variables ( 2 1 , .  . . , z,,) to which we must assign  a value 
out of b possible values. This assignment must  satisfy  simultaneously  a  set of constraints, each involving k variables. 
The resulting number of nogood ground  instances  (roughly  proportional to  the  number of constraints) is denoted by 
(. In  the  particular case of the  graph coloring problem,  the size of the  constraints k = 2 since each edge  imposes a 
constraint  on  the colors assigned to  the pair of nodes it connects. The number of nogood  ground  instances < = eb 
because each edge contributes  exactly b nogoods and  there are  a total of e edges (for  each  edge, b pairs of identical 
colors are  forbidden). 

The search  tree  corresponding to  this  constraint  satisfaction  problem is also shown in Fig. 1. The  i-th level of the 
search  tree enumerates all  possible partial solutions  involving  a specific subset of i ,  out of the  total p ,  variables. The 
branching  ratio  in  this  tree, i.e. the  number of children  per  node, is equal to b ,  the  number of domain values of a 
variable. For a  hard  instance of the  problem,  the  number of steps  required to find a  good  assignment at  the  bottom of 
the  tree (or decide that  there is no possible assignment  satisfying  all  the  constraints)  scales as b p ,  i.e., of the  order of 
the  entire  space of candidate  solutions  must  be  explored.  Remarkably,  many of the  properties of search  trees  can  be 
understood  without precise knowledge of the  constraints. Specifically, it  has been found  empirically that  the difficulty 
of solving  a particular  instance of a  constraint  satisfaction  problem  can  be  approximately specified by four  parameters: 
the  number of variables, p ,  the number of values  per  variable, b,  the  number of variables  per constraint, k ,  and  the 
total  number of assignments of the  individual  constraints  that  are  nogood, < [16-181. 

Clearly, if < is  small,  there  are generally many  solutions satisfying the few constraints, so that  the problem is easy 
to solve. Conversely, if ( is large,  the problem is in general  overconstrained,  and it is easy to find that  it  admits no 
solution. The problem is maximally  hard in an  intermediate  range of values for (. In an effort to  understand  the 
observed variation in difficulty  across different instances of NP-complete  problems for fixed p and b,  it  has been shown 
that  the cost of finding  a  solution (or proving  none  exists)  depends essentially on the  parameter 

P = < / P  , (1) 

which characterizes the average  number of constraints per variable [16,19,20]. Specifically, the problem  solving dif- 
ficulty exhibits  a  ubiquitous easy-hard-easy pattern, with  the  most difficult problem  instances  clustered  around  a 
critical value of /3 given,  approximately, by 

PC = bk log(b) (2) 

assuming bk >> 1 for simplicity.  This  phenomenon,  akin  to  a phase  transition in physical systems [19,20],  persists 
across  many different sophisticated  algorithms. The average case complexity for a fixed ,B is therefore believed to be 
a more  informative  measure of computational  complexity  than  either worst case or average  case  complexity.' It is 

'The motivation  for  investigating the complexity of NP-complete  problems in term of ,B is that worst  case analyses  can  be 
misleading  because they  tend  to  focus  on  atypical  problem  instances. Similarly,  average  case  analyses can  be misleading  because 
they  are  sensitive  to  the choice of the  ensemble of problem  instances  over which the  average is computed.  Such an ensemble 
may contain  for  example  an exceedingly large  number of easy  instances. 



the  measure  t,hat we will use i n  the rest of this  paper for estimating t,he scaling of t,he cortlplesit,y of our imI)roved 
quantum sc;trch algorithnl ( a s  well as the corresponding classical search algorithm). 

B. Average corr~putational  complexity of a classical  algorithm1 

Let us  describe  a  simple  classical  algorithm for a  tree search problem that exploits  the  structure  of  the problem 
by use  of nesting. As pictured in Fig. 1, the key idea is to perform  a  preliminary  search  through  a  space of partial 
solutions in order to avoid a  search  through the  entire  space at  the  bottom of the  tree. By definition,  a  partial solution 
at  level i in the  tree assigns  values to a  subset of i so-called primary variables ( t l , .  ' . , t i ) ,  which we denote as A .  
The subset of secondary  variables (z i+l , .  . . ,  tp), denoted as B ,  corresponds to  the variables to which we assign a 
value only when extending  the  partial  solutions  (i.e., when considering the  descendants of the  partial  solutions). In 
general,  any  partial  solution  can  be tested  against  a  part of the  constraints, namely just  those  constraints involving 
the  primary variables A .  A partial  solution  that satisfies  all  these (testable)  constraints  can be viewed as  a could-be 
solution in the sense that all  solutions at  the  bottom of the  tree (at  level p )  must be descendants  of  could-be's. A 
classical search  can be speeded up by terminating search  along paths  that  are not descendants of a could-be,  thereby 
avoiding to search  through  the  entire  space. The following algorithm  can be used: 

Find a could-be  solution at  level i in the tree. For this  purpose, choose repeatedly  a  random  partial  solution at  
level i ,  until it satisfies the  testable  constraints. 

0 For each could-be solution, check exhaustively (or by use of a random  search) all its  descendants at  the  bottom 
of the  tree (level p )  for the presence of a possible  solution. 

This is clearly not  a  sophisticated  algorithm. It  amounts  to nesting the search for a successful descendant at  level p 
into  the search for a  could-be a t  level i. Nevertheless, it does  exploit the problem structure by using the knowledge 
gleaned  from the search at  level i to focus the search a t  level p .  By finding  a quantum  analog of this  algorithm (cf. 
Sec. IV), we will, therefore, be  able  to  address  the  impact of problem  structure on quantum  search. 

Let  us estimate  the  expected cost of running  this  algorithm.  This cost  consists  essentially of three  components: n,  
the cost of finding  a  consistent partial  solution (a could-be) at level i in  the  tree, m, the cost of the  subsequent search 
among  its  descendants at  level p ,  and T ,  the  number of repetitions of this whole procedure before finding  a  solution. 
The search  space for partial  solutions  (assignment of the  primary variables A )  is of size d A  = b'. Assuming that there 
are n A  could-be  solutions a t  level i (i.e.,  partial  solutions  that  can lead to a  solution),  the  probability of finding  one 
of them by using a  random search is thus n A / d A .  Thus, one needs of the  order of 

n = d A / n A  (3) 

iterations  to find one  could-be  solution. The descendants of a  could-be are  obtained by assigning a value to  the subset 
of secondary  variables B ,  of size d B  = b p - i  (each  could-be  has d B  descendants).  Thus,  searching  through  the  entire 
space of descendants of a  could-be  requires on average 

m = d B  (4) 

iterations. If the  problem admits a  single solution,  this whole procedure needs to be  repeated n A  times, on average, 
since we have n A  could-be  solutions. More generally, if the  number of solutions of the problem is given by n A B ,  this 
procedure  must  only be repeated 

7' = n A / n A B  (5) 

times in order to find a  solution  with a probability of order 1. Thus,  the  total number of iterations required to find a 
solution of an average instance is approximately  equal to 

This corresponds to  an  improvement over a  naive  unstructuredsearch  algorithm.  Indeed,  the cost of a  naive  algorithm 
that does not exploit structure is simply d A B / n A B ,  where  AB = d A d B  = b'' is the dimension of the  total search 
space. 
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‘Tht: first term in t,he nunlerator of Eq. (6 )  corresponds to  the search for could-be solutious i n  a space of partial 
solutions of size c f ~  (shatled area  at level i in Fig. l ) ,  while the second term corresponds to  the search f o r  actual 
solutions  among all the  descendants of the nA could-be  solutions, each of them having d~ descendants  (shaded  area 
at  level p in Fig. 1).  ‘The denominator in  Eq. (6) accounts for a problem admitting more than one  solution. We 
w i l l  see i n  Sec. I V  that the quantum  counterpart of Eq. (6) involves taking the square  root of 11 ,  m ,  and I - ,  which 
essentially  results in quantum-mechanical  square-root  speedup over this classical algorithm. 

TO make the  estimate of this classical average-case complexity  more quantitative, let p ( i )  be the  probability that a 
partial  solution  at level i is “good”  (i.e.,  that  it satisfies all  the testable  constraints). In  Appendix A ,  we provide an 
asymptotic  estimate of p ( i )  for an average  instance of a  large  problem ( p  + 0 0 )  with a fixed value of the  parameter 
P .  Recall that, if  we want to preserve the  difficulty while considering the  limit of large  problems,  must be kept 
constant.  This is necessary for the  complexity measure that we consider in this  paper, as mentioned  before.  Thus, 
by making use of this  asymptotic  estimate of p ( i ) ,  we can approximate  the expected  number of could-be  solutions at  
the  ith level, nA = p ( i ) b ’ ,  and  the expected  number of solution at  the  bottom of the  tree, n A B  = p ( p ) b p .  Therefore, 
the average  search time of the classical algorithm  to find the first solution is approximately  equal  to 

b’ + p (  i )  b!” T,(i) = 
P ( P P  

This is essentially the cost for  finding one  solution (which  basically  requires checking all the  partial  solutions for a 
could-be, and subsequently  checking the descendants of all  these  could-be  solutions)  divided by the  expected  number 
of solutions.2 

Equation (7) yields an  approximate cost  measure for our classical nested  search algorithm as a  function of the level 
of the  “cut”, i .  An important  question now is where to  cut  the search  tree? If one cuts  the  tree  too high  (searching 
for could-be  solutions at  small i ) ,  one is unlikely to learn anything useful as most  partial  solutions will probably  be 
(‘goods’’, allowing for little  discrimination between solutions  and non-solutions.  In  other  words, the second term  in 
the  numerator of Eq. (7) dominates since p ( i )  is close to 1, i.e.,  there  are  many could-be  solutions at  level i .  Searching 
for  could-be  solutions is thus  fast  (the  space of primary  variables is of size b’ only),  but  those  partial  solutions  are of 
little use for singling out  the  actual  solutions.  The cost of the search among  the  descendants of those  partial  solutions 
is then  high. Conversely, if one  cuts  the  tree  too deep  (searching  for  could-be  solutions at  large i ) ,  although  this 
would enhance  discrimination between solutions  and  non-solutions,  the  search  space for the  primary variables would 
be  almost as large as the  entire  space.  Then,  the first term  dominates  the scaling as the search  for  could-be  solutions 
becomes  time-consuming. It is therefore apparent  that, for a  typical  problem  instance,  there  ought to be  an  optimal 
level at  which to  cut. 

We can  estimate  the  optimal level by finding  the value of i that minimizes the classical computation  time T,(i) for 
a given value of p ,  b ,  <,  and k ,  using the functional  form for p ( i ) .  This is done in Appendix B, where we estimate 
the asymptotic behavior of the  location of the  optimal  cut level as a  function of p ,  as larger  problems  are  considered 
( p  + cm). We then  calculate  the  corresponding  asymptotic scaling of T, for large  problems. The result is that  the 
computation cost of running  the classical  nested  search algorithm scales as 

T, 21 bap (8) 

for a search  space of dimension d = b p ,  where o < 1 is a constant  depending  on  the problem  considered.  (More 
generally, this  constant also depends  on  the  number of nesting levels, but we have considered a  single level of nesting in 
this  Section.) As we will see, the  structured  quantum search  algorithm that we present in Sect. IV has  a  computational 
cost of order of f i ,  in agreement  with  the  idea that a  square  root  speedup is the best that can  be achieved by 
quantum mechanics. The focus of this  paper, however, is to show explicitly how a  quantum  algorithm  can be 
implemented that reaches this  maximum  speedup over the classical algorithm discussed above.  Interestingly  enough, 
the  quantum complexity of our nested algorithm scales then as a power of the dimension of the search  space d = b p  

that is less than 1/2. Structured  quantum search  therefore  offers  a  significant  speedup over both  structured classical 
search and  unstructured quantum search. 

2The denominator of Eq. ( 7 )  is the number of solutions at the bottom of the tree. For a problem of maximum difficulty 
( p  = P C ) ,  it is shown  in  Appendix A that p ( p )  = b - p ,  i.e., the problem admits a single solution on average. 



111. UNSTRUCTURED  QUANTUM  SEARCH 

Let US first review the  standard unstr.uctuI.edquantun1 searrh algorithm [3,4]. Consider  a  Hilbert  space of dimension 
d i n  which each basis 1.) state ( x  = 1, . . . d )  corresponds  to  a  candidate  solution of a search  problem. Any search 
problem  can be recast as the problem of finding the value(s) of x at which an  “oracle”  function f ( x )  is  eclual to one 
(this function being zero elsewhere). We start  the  quantum search process from an  arbitrary basis state Is), and  the 
goal is to reach a solution (or target) basis state It), with f ( t )  = 1, in a shortest  computation  time. More precisely, 
if there is a  single  solution (or target  state),  the goal is to reach a state  that has  an  amplitude of order 1 in It), so 
that a  measurement of this  state gives the  solution  with  probability of order 1 .  (If  there  are T solutions,  the goal is 
to reach a  superposition of the  states It), each with  an  amplitude of order T - ’ / ? . )  

The  quantum search algorithm we discuss below is in fact  an  immediate  extension of the  original  one [3,4], where 
an  arbitrary  unitary  transformation is used instead of the  Walsh-Hadamard  transformation [15]. Assume that we 
have at  our  disposal  a  quantum circuit that performs  a  particular  unitary  operation U .  If this  operation  connects 
the  starting  state Is) to  the  target  state It), i.e., ( t lUls)  # 0, then  this  operation  can  be used classically to find the 
target.  Indeed, if we measure  the  system  after  applying U ,  the  probability of obtaining  the  solution It) is obviously 
I(tlUls)12. Thus, on  average, we need to repeat  this  experiment I ( t l U l ~ ) l - ~  times to find the  solution  with  probability 
of order 1. We  will show now that, using a quantum  algorithm,  it is possible to reach the  target  state It) in a  number 
of steps of order ~ ( ~ ~ U ~ S ) ~ - ~  only, which represents  a  huge  speedup  provided that I(tlUls)l << 1 (this corresponds to 
the  situation of interest where the search  space is very large). 

The idea  behind  a  quantum search algorithm  is  to postpone the  measurement,  and keep a  superposition of quantum 
states  throughout  the  algorithm. Only at  the  end, a  measurement is performed. Let us define the  unitary  operation 

Q = -uI,utIt = -u e i r p ,  Ut e i rp t  (9) 

where P, = Is)(sl and Pt = It)(tl are  projection  operators on Is) and It), respectively. The two unitary  operators 
I ,  = 1 - 2P, and It = ll - 2Pt perform  a  controlled-phase  operation:  applying I ,  (or I t )  on  a  state 1 1 )  flips its phase 
if I = s (or I = t ) ,  and leaves it unchanged  otherwise.  Note that  the  target  state It) is of course  not  available (it 
is what we are  searching for).  Instead, we have at  our disposal the  quantum  circuit (or “oracle”) that computes  the 
function f ( + ) ,  and we can use it  to implement  the  circuit for I t .  Thus, we have I t lz)  = ( - l ) f ( z ) l ~ )  for all state 1 1 ) .  
The circuit for I ,  does  not  require the  function f ( x )  and is trivial. The principle at  the  heart of quantum search is 
to  apply  the  operation Q repeatedly in order to  amplify the  target  component It), starting  from VIS).  This  quantum 
amplitude  amplification [21] can be understood by noting that, after  applying U to  the  starting  state Is), the  repeated 
applications of Q essentially rotate  this  state  into  the  target  state It) at  an  angular velocity that is linear in the 
number of iterations. More specifically, using Q = -1 + 21t)(t/ + 2Uls)(slUt - 4Uls)(slUtlt)(tl, we can see that Q 
preserves the two-dimensional  subspace spanned by VIS)  and It), namely 

Therefore, in the case where I(tlUls)l << 1, the  states VIS)  and It) are  almost  orthogonal,  and Q tends  to  a  rotation 
matrix of angle  2l(tlUIs)I << 1. Indeed, keeping only the first-order terms in u E (tlUls),  we obtain 

We can  then  easily  approximate  the  operation of Q” in the  subspace  spanned by VIS)  and It): 

implying that  the  amplitude of the  target  state It) after  n  iterations is 
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( 1 3 )  

These  last  expressions are only  asymptotically  valid, at  the  limit of small 1 u 1 .  The exact  expressions for Eqs. (12) and 
( 1 3 )  in terms of Chehyshev  polynomials  can  be  found in .Appendix C. 

Consider first the case of a snlall rotation  angle. From Eq. ( I n ) ,  we see that if we iterate  the  application of Q on 
Uls) ,  the  amplitude of I t )  grows linearly with the  number of iterations R provided that  the  total angle 2nlul << 1: 

(tlQ"U1s) 2: (1  + 2 n )  (t lUls) (14) 

Consequently, if we measure  the  system  after n iterations,  the  probability p ( n )  of finding the  solution grows quadrat- 
ically with n ,  as p ( n )  - n21(tlUIs)I2. This is a  great improvement  compared to  the linear  scaling of the classical 
algorithm  consisting in repeating R times  the  measurement of Vis ) ,  namely p ( n )  - nl(tlUls)l'. This is the  quadratic 
amplification effect provided by quantum mechanics. 

Now, consider the goal of reaching the  target  state It) using this  operator Q. From  Eq. (12) we see that,  starting 
from  the  state U ( s ) ,  we need to apply Q until we have rotated  it by an angle of about 7r/2 in order to reach It). At 
this  time only,  one  measures the  system  and  gets  the desired solution  with  a  probability of order 1. The number of 
iterations required to  rotate VIS) into  the  solution It) is thus 

and scales as the square  root of the classical time.  It is worth  noting that  the  amplitude of any state Ix) orthogonal 
to  the  target It) is given by 

(zIQ"Uls) z cos(2nlul) (x lUls )  (16) 

so that (rlQ"U(s) z (z lU(s)  for small angles. Thus,  the  amplitude of non-solutions is not amplified by applying Q 
repeatedly, so that  the  quantum search algorithm selectively amplifies the  solutions only. 

Thus, we have  described  here  a  general  technique for achieving  a  quantum-mechanical  square-root  speedup of a 
search algorithm relying on any unitary  transformation U [15]. The  quantum search algorithm  can be simply viewed 
as a rotation  from VIS) to It) based on the  repeated  operation of Q ,  followed  by a  measurement.  In  the  above 
discussion, the search operator U can  be arbitrary, provided it connects Is) and It). In the case of an unstructured 
search  problem, as we have no a priori knowledge about where the  solution is located,  the  most  natural choice for U 
is  the  Walsh-Hadamard  transformation H [3,4]: 

where ii?.g = Ciz0 ciyi(mod 2),  with  xi  (yi) being the  binary  digits of x ( Y ) . ~  Indeed, U = H does  not  bias  the search 
towards a particular  candidate  solution since His)  has  the  same  (squared)  amplitude in all  the  candidate  solutions, 
so that  the search starts from  a  uniform distribution of all states. Applying U = H to an  arbitrary  state Is), we see 
that 

d -  1 

(t lHIs) = *l/& (18) 

for all possible target  state It). Thus, according to  Eq. (15), the  number of iterations  in  the  quantum search  algorithm 
relying  on H is O(&) [3,4], whereas  a classical search  algorithm obviously requires O ( d )  steps.  When  there  are 
multiple  target  states  (the  problem  admits several solutions),  it can be shown that  the  quantum  computation  time 
becomes O ( m ) ,  where P is the  number of solutions [lo]. The classical counterpart is then  simply O ( d / r ) .  

For a structured search problem, however, it is natural  to use the knowledge of the  structure in order to choose a 
better U .  Indeed, if we have partial knowledge about where the  solutions  are, we can exploit it  to bias the search in 
such  a way that VIS) has  larger  amplitudes in states which are  more  probable  to  be  solutions.  This is the focus of 
the present paper.  It has been shown recently that  an  arbitrary  (non-uniform)  initial  amplitude  distribution can  be 

3Here and below, we assume that d is a power of 2 for simplicity. 
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useti as well w i th  the  stmclnrd  quantum search algorithtn, resulting i n  a O(  m) qua11tunl co1nputnt.ion t.itne [22]. 
‘This seems to  indicate that  the scaling  remains in  O(  J ; s )  even i f  we use our knowledge about  the problem by biasing 
the initial  distribution. I n  contrast, we will show i n  Sec. IV that  the use  of a nested quantum search algorithm 
can  result i n  a power  law in d with an exponent that is smaller. than 1/2. The key idea is that l r  is not fixed D 

prtori, but is rather  obtained  “dynamically” by the quantum  algorithm  itself,  depending on the  particular  instance. 
In short,  the  standard search algorithm is  used to construct an  effective  search  operator I ;  (or a  non-uniform  initial 
distribution) which,  itself, is nested  within another  quantum search algorithm. In  other words, we apply  quantum 
search “recursively”: the  operator ( - H I , H I t ) ” H  resulting  from the nested search algorithm based on H is used as a 
better search operator U for a  quantum search at  an upper level  of hierarchy. 

IV. NESTED  QUANTUM  SEARCH  ON  STRUCTURED  PROBLEMS 

A.  The  core  quantum  algorithm 

Assume that  the Hilbert  space of our search  problem is the  tensor  product of two  Hilbert  spaces X f l ~  and X B .  As 
before, A denotes  the set of primary variables, that is,  the variables to which we assign a  value in the first stage. 
The  partial  solutions correspond to definite values for these  variables. Thus, % A  represents the search  space for 
partial  solutions (of dimension d A ) .  The set of secondary  variables,  characterizing the extensions of partial  solutions, 
is denoted by B ,  and  the  corresponding  Hilbert  space X B  is of dimension d e .  Let us briefly describe  the  quantum 
algorithm  with  a single  nesting level (the  counterpart of the classical algorithm of Sect. 11): 

0 The first stage  (i) consists  in  constructing  a  superposition (with equal amplitudes) of all the  could-be  solutions 
a t  level i by use of the  standard  unstructured search algorithm based  on H .  

0 Then (ii) ,  one  performs  a  subsequent  quantum search in the  subspace of the  descendants of all the could-be 
partial  solutions,  simultaneously.  This second stage is achieved by using the  standard  quantum search algorithm 
with, as an  input,  the superposition of could-be  solutions  resulting  from  the  first  stage. The overall yield of 
stages  (i)  and  (ii) is a  superposition of all states where the  solutions have been partially amplified  with  respect 
to non-solutions. 

0 The final procedure  (iii)  consists of nesting  stages  (i)  and (ii)- using them as a search operator U-inside a 
higher-level quantum search algorithm  until  the  solutions get  maximally  amplified, at  which point  a  measurement 
is performed.  This is summarized in Fig. 2. 

FIG. 2. Schematic  representation of stages ( i )  and (ii) of the quantum algorithm.  These  stages partially  amplify the  solution 
states, and can be nested  into a standard quantum  search  algorithm (ii i)  in  order to  speedup  the  amplification of the  solutions. 

Let us now follow in more  details  the evolution of the  quantum  state by applying  this  quantum nested algorithm, 
and  estimate  the  number of iterations required. The  starting  state of the search is denoted as Is, s’), where Is) (lying 
in X A )  and Is’) (lying in X B )  are just  the  initial  state of two different parts of the  same, single, quantum register 
which is large  enough to hold all the  potential  solutions in the  total search  space (i.e.. all the U‘ leaf nodes of the 
search  tree at level p ) .  Register A stores  the  starting  state  at  an  intermediate level i in the  tree, while register B 
stores  the  continuation of that  state  at level p .  In other words, A holds partial  solutions  and B their  elaboration in 
the leaves of the  tree. 

( i )  The first stage of the  algorithm consist in a  standard  quantum search for could-be partial  solutions I C )  at level i ,  
that is, states in subspace X A  that  do not  violate any (testable)  constraint. We start from state Is) in subspace ‘ H A ,  
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we can  perform an amplification of the  components I C )  based on Q = - H I ,  H I c  where 

The  states I C )  correspond to  the could-be  partial  solutions in ‘HA (assignment of the  primary variables that could lead 
to a solution),  and belong to  the subset C = {cl , .  . . , cn,}. We assume  that  there  are nA could-be  partial  solutions, 
with 1 << nA << d A .  The  quadratic amplification of these  could-be  solutions, starting from Is), is reflected by 

(c1Q”Hls) E R (clHls)  2: n/& (22) 

for small  rotation angle. Thus,  applying Q sequentially, we can  construct  a  superposition of all the could-be  solutions 
IC), each  with an  amplitude of order - 1/&. The required  number of iterations of Q scales as 

This  amplitude amplification  process  can  equivalently  be  described in the  joint  Hilbert  space ‘ H A  8 ‘ H E ,  starting  from 
the  product  state Is, s’), where Is’) denotes  an  arbitrary  starting  state in ‘ H E ,  and  applying (Q  8 1) sequentially: 

(c, .’I(& 8 1)”(H 8 n)ls, s’) = (clQnHls) - n/& (24) 

Here and below, we use the  convention  that  the left (right)  term in a  tensor  product refers to subspace A ( B ) .  

(ii) The second stage of the  algorithm is a  standard  quantum search for the  secondary variables B in the  subspace 
of the “descendants” of the could-be  solutions that have been singled out in stage  (i). As before, we can use the search 
operator H that connects  extended  could-be  solutions I C ,  s’) to  the  actual  solutions or target  states It, t’) in the  joint 
Hilbert  space: 

Note that,  this  matrix element is non-vanishing only for could-be states I C )  that lead to  an  actual  solution. Define 
the  operator R = -( 1 @ H I , !  H )  I t ,  with 

where T is the  set of solutions It,t’) at  the  bottom of the  tree,  and # ( T )  = R A E ,  i.e.,  the  problem  admits RAE 

solutions. We can  apply  the  operator R sequentially in order to amplify  a  target  state It, t’), namely 

for small  rotation angle. Note  that, for a could-be state I C )  that does  not lead to a  solution (c # t ) ,  we have 
I t I c , z )  = Ic,z) for all z, so that R m ( l  8 H)lc,s’) = (-1 8 Hl , !H)”(n  8 H ) ~ C , S ’ )  = (1 8 H)~C,S’), and  the  matrix 
element is not amplified by m compared to  the case c = t .  In other words,  no  amplification  occurs in the space of 
descendants of could-be partial  solutions  that  do  not lead to  an  actual  solution.  Thus,  Eq. (28) results in 
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I71 2 (30) 

tinles i n  order  to  maximally  amplify each solution. We then  obtain  a  superposition of the  solution  stat,es I t ,  l ' ) ,  each 
w i t h  an amplitude - l/&. This can also be seen by conlhining Eqs. (24) and ( ' L C ) ) ,  and using the resolution of 
identity fl = Cc,y I C ,  y ) ( c ,  yl: 

( t ,   t ' ~  ~ ~ ( n  B H ) ( Q  n)"(H 8 n )  IS ,  s') = x(t3 ~ ' I R " ( u  o H ) ~ x ,  Y) (X,  Y I ( Q  B n)"(H 3 n ) b ,  s') 
+ 4 

U J>?4 

= ( 2 ,  t'lRm(n @ ~ ) l t ,  S I )  ( t ,  @ n y ( H  o n)ls, S I )  

= ( m / & ) ( n / A )  
I/& (31) 

Thus,  applying  the  operator Q" followed by the  operator R" connects the  starting  state Is, s') to each of the  solutions 
It,t') of the  problem  with  a  matrix element of order - 1/&. 

(iii) The  third  stage consists in using the  operator U 3 Rm(n @ H ) ( Q @   f l ) " ( H @  1) resulting  from  steps ( i )  and (ii) 
as a  search operator for a higher-level quantum search algorithm, in order to  further  amplify  the  superposition of 
nAB target (or solution)  states It, t'). The goal is thus  to construct  such  a  superposition where each solution  has  an 
amplitude of order - 1/*. As before, we can  make use of the  operator S = -U(Is  8 Isj)UtIt  where I,,  I,,, and 
It are defined in  Eqs. (20), (26), and (27), in order to perform  amplification  according to  the relation 

( t , t ' [ S U ( s ,  s') N r ( t , t ' (U(s ,  s') N r/& (32) 

for small  rotation  angle.  The  number of iterations of S required to maximally  amplify the solutions is thus of the 
order of 

This completes the  algorithm. At this  point,  it is sufficient to perform  a  measurement of the amplified superposition 
of solutions.  This yields  one  solution It, t ') with  a  probability of order 1. 

FIG. 3. Circuit  implementing  the  nested  quantum  search  algorithm  (with a single  level of nesting). The  upper  set of quantum 
variables,  initially in  state Is), corresponds to  the  primary variables A .  The lower set of quantum variables,  initially  in states 
Is'), is  associated  with the  secondary variables B. The  quantum circuit  makes  use of controlled-phase  gates I ,  = exp(irls)(sl), 
I,! = exp(ir1s1)(s'1), I ,  = e x p ( i r x c E c  Ic)(cl), and I t  = exp( i r&t , t , )ET l t , t ' ) ( t , t ' l ) ,  and Walsh-Hadamard  gates H .  The 
entire  operation of U (exhibited  inside  the  dashed  box) is repeated F times. Note  that U" = U t  corresponds to  same  the 
circuit as U but  read from right  to  left. 

U U- ' U r"""""""""""""""""""""""""""""""". r - - - - - - ,  
I n iterations I I I I I 

c - - - - - - ,  
I I I I I I 
I / \ I I 

I I I I 

I""". I - - - - - -. I \ 1 ;  I I I I 
I rn itmations I I I I I 
I""""""""""""""""""""""""""""""""" 

r iteraticar 

In Fig. 3, the  quantum network that implements  this nested quantum search algorithm is illustrated. Clearly,  a 
sequence of two quantum search  circuits (a  search in the A space followed by a  search in the B space) is nested 
into  a global  search  circuit in the whole Hilbert  space X A B .  This can be interpreted as a  "dynamical" choice of the 
search operator U that is used in the  global quantum  search.  This  quantum nesting is distinct from  a  procedure 
where one would try  to choose an  optimum U before  running  the  quantum search by making use  of the  structure 
classically (making several  classical  queries to  the  oracle) in order to  speedup  the resulting quantum  search. Here, no 
measurement is involved and  structure is used at  the quantum level. 
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B. Qllantuln avorage-case complexity 

Let us estimate  the  total  number of iterations, or more precisely the number of times that a  controlled-phase 
operator ( f t ,  which flips the  phase of a solution, or I,, which flips the phase of a  could-be partial  solution) is used. 
Since we need to repeat I’ times  the  operation S ,  which itself requires applying n times Q and m times R,  we obtain 
for the  quantum  computation  time 

This expression is the  quantum  counterpart of Eq. (6),  and h a s  the following interpretation.  The first term in the 
numerator corresponds to a  quantum search for the could-be partial  solutions in space of size d A .  The second term is 
associated  with  a  quantum search of actual  solutions in the  space of all the  descendants of the R A  could-be  solutions 
(each of them  has  a  subspace of descendants of size d ~ ) .  The  denominator  accounts for the fact that  the  total  number 
of iterations decreases with  the  square root of the  number of solutions of the problem R A E ,  as in the  standard  quantum 
search algorithm. 

Let us now estimate  the scaling of the  computation  time required by this  quantum nested algorithm for a  large 
search  space ( p  + a). Remember that p is the  number of variables (number of nodes for the  graph coloring  problem) 
and b is the  number of values  (colors)  per  variable. As before, if  we “cut”  the  tree at level i (;.e.,  assigning a value 
to i variables out of p defines a  partial  solution), we have dA = b’ and d B  = b”-’. Also, we have nA = p(i)b’, and 

= p(p)b”, where p ( i )  is the  probability of having  a  partial  solution at  level i that is “good” in a tree of height 
p .  (The  quantity p ( p )  is thus  the  probability of having  a  solution in the  total search  space.) We can reexpress the 
computation  time as a  function of i ,  

which is the  quantum  counterpart of Eq. (7). In  order to determine the scaling of Tq, we use the  asymptotic  estimate 
of p ( i )  that is derived in Appendix  A,  namely 

Eq. (36) is a good  approximation of p ( i )  in the  asymptotic regime,  i.e., when the dimension of the problem p (or the 
number of variables) tends to infinity.  Remember that, in order keep the difficulty constant when increasing the size 
of the  problem, we need to choose the  number of constraints [ = ,Bp when p + a.* The  constant P corresponds 
to  the average  number of constraints per  variable, and is a  measure of the difficulty of the problem. The difficulty 
is maximum when /3 is close to a critical value PC = bk log(b), where k is the size of the  constraint (i.e.,  number of 
variables involved in a  constraint). Note that p ( p )  = b-”(p/pc), implying  that  the  number of solutions at  the  bottom 
of the tree is n(p)  = b”(l-P/Pc). Thus, if /3 N PC,  we have p ( p )  b-p, so that  the problem  admits of the  order of 
n ( p )  2 1 solutions.  This  corresponds indeed to  the hardest  case, where one is searching for a single  solution in the 
entire search  space.  When ,Ll < PC, however, there  are less constraints  and  the  problem  admits  more  than  one  solution, 
on  average. If P > PC,  the problem is overconstrained,  and  it  typically becomes easier to check the nonexistence of a 
solution. 

Now, plugging Eq. (36) into  Eq. (35), we obtain for the  quantum  computation  time 

Defining the reduced level on  the  tree  as x = i / p ,  i.e.,  the  fraction of the height of the  tree at  which we exploit the 
structure of the  problem, we have 

4For the  graph coloring problem, since E = eb (where e being the  number of edges and b the  number of colors),  it implies 
that  the  number of edges must grow linearly with  the  number of nodes for a fixed number of colors in order  to preserve the 
difficulty. In other words, the  average  connectivity  must  remain  constant. 
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where (1 g a. Now, we want to find the value of c that minimizes  the computation  time & ( e ) ,  so we have to solve 

For large p (or large a ) ,  this  equation  asymptotically reduces to 

( P / P C )  x k  + x - 1 = 0 (40) 

The solution x (with 0 5 x 5 1) corresponds  therefore to  the reduced level for which Tq(x) grows asymptotically 
( p  + m) with the  smallest power in b. Note that  this  optimum x is such that  both  terms in the  numerator of Eq. ( 3 i )  
grow with the  same power in b (for  large p ) .  This reflects that there is a  particular  fraction t of the height of the  tree 
where it is optimal  to  "cut",  i.e.,  to look at  partial  solutions.  The  optimum  computation  time  can  then be written as 

where the  constant a < 1 is defined as the  solution x of Eq. (40).' Note that, for a  search  with  several levels of 
nesting,  the  constant a < x ,  as we shall see in Sect. IVC. 

Equation (41) implies that  the scaling of the  quantum search in a  space of dimension d = b p  is essentially O(d"I2)  
modulo  the  denominator (which  simply  accounts for the  number of solutions). In contrast,  the  standard unstructured 
quantum search  algorithm  applied to  this problem  corresponds to a = x = 1, with  a  computation  time scaling as 
Tq(a = 1) = O(d ' I2 ) .  This  means  that  exploiting  the  structure in the  quantum  algorithm  results  in  a decrease of 
the power in b by a coefficient a: the power 112 of the  standard  quantum search is reduced to a 1 2  for this nested 
quantum search algorithm. Consider this result at  /3 = PC,  i.e., when the difficulty of the  problem is maximum for a 
given size p .  This is the  most  interesting case since when ,B < P C ,  the problem  becomes  easier to solve classically. For 
P = P C ,  the nested algorithm essentially scales as 

Tq 2: daI2 = fi (42) 

where a = x < 1 with x being the solution of x k  + x - 1 = 0, and d = bp is the dimension of the search  space. 
This represents  a  significant  improvement over the scaling of the  unstructured  quantum search algorithm, O(d1l2). 
Nevertheless, it  must be emphasized that  the  speedup  with respect to  the  computation  time O(da)  of the classical 
nested algorithm presented in Section I1 is exactly  a  square  root  (cf.  Appendix B). This implies that  this nested 
quantum search algorithm is the optimum quantum version of this  particular classical non-deterministic  algorithm. 

For the  graph coloring  problem ( k  = 2 ) ,  we must  solve the  linear  equation of second order x 2  + x - 1 = 0, whose 
solution is simply x = (-1 + &)/2  = 0.6180. (When IC > 2 ,  the  solution for x increases, and  tends  to 1 for large k . )  
This  means  that  the level on the tree where it is optimal  to use the  structure is at  about 62% of the  total height of 
the  tree, i.e., when assigning  values to  about 62% of the p variables.  In this case, the  computation  time of the nested 
algorithm scales as O(d0.31), which is clearly an  important  computational  gain  compared  to O(do,').  

Consider the regime where ,f3 < P C ,  i.e.,  there  are fewer constraints  and therefore  more than one  solution  on  average, 
so that  the problem  becomes  easier to solve. For a given t ,  the  solution x of Eq. (40) increases when P decreases,  and 
tends  asymptotically  to 1 for ,B + 0. This  means  that we recover the unstructured quantum search algorithm in the 
limit where ,B + 0. The  denominator in Eq. (41) increases,  and it is easy to check that  the  computation  time 

decreases when P decreases. As expected,  the  computation  time of the nested algorithm  approaches O ( a )  as /3 
tends to 0 (or x + l),  that is, it reduces to  the  time of the  standard  unstructured  quantum search algorithm  at  the 
limit p -+ 0. 

'We may  ignore the  prefactor 2 as it only  yields an additive  constant  in  the  logarithm of the  computation  time. 
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C .  Quantum search  with  several  levels of rlestilrg 

The  quantum algorithm  described in Sect. IV A relies on a single level of nesting.  Indeed, the search at  the bottom 
of the tree (level 1 4 )  is speeded  up by making use of a search at level i which determines  the  partial  solutions which 
are  “good”. Only the  candidate  solutions which are  descendants of these partial  solutions  are  examined i n  the search 
at  level p .  It  should be realized that these  “good” partial  solutions at  level i are selected,  themselves, by a naive 
search:  stage ( i )  indeed amounts  to use the  standard  unstructured search based on I f .  In the  corresponding classical 
nested algorithm,  this  amounts  to select  a random  partial  solution at  level i and check whether  it is good. 

It is natural  that  both  the classical and  the  quantum  algorithms could be improved further if the search for good 
partial  solutions  at level i itself was made  faster by making use of the  structure of the  upper  part of the  tree  (by 
examining  partial  solutions a t  level j, with j < i ,  and considering  only the  descendants of the “good” ones).  This 
leads to  the notion of a search  with several levels of nesting  (i.e., a nesting  depth larger than  one). 

In order to analyze the scaling achieved by several levels of nesting,  let us consider a  search at  level i which 
corresponds to  the  n-th  nesting level. We suppose that  this search relies itself on a  search a t  level j ,  where j < i < p ,  
which corresponds  therefore to  the n + 1-th  nesting level. Let i = xnp  and j = x , + l p ,  where E ,  and zn+1 denote  the 
reduced level on the  tree at  the  n-th and n + 1-th  nesting level, respectively.  Assume that  the  quantum  computation 
cost a t  level j is given by 

where an+1 is the scaling coefficient at  the n + 1-th level of nesting (level j in the  tree). Using the  structure  at level 
j, the  quantum  computation cost at  level i can  be  written as 

By optimizing j so that t ( i )  is minimum, as before, we obtain j = x , + l p ,  where z,+1 is a  solution of 

with 0 5 x,+1 5 1. Defining the  scaling coefficient an by 

we see that  the corresponding computation cost at level i is given by 

Thus,  to determine  the cost of the global algorithm, we need to solve the set of recurrence equations (46)-(47) for 
n = 0,1 ,  . . . , N - 1, where N is the  nesting  depth ( N  = 1 corresponds to  the  algorithm described  in  Sect. IV A).  The 
boundary  conditions  are x0 = 1 (the upper level is a  search for solutions at  the  bottom of the  tree,  i.e.,  at level p )  and 
LYN = 1 (the  innermost search at  the  N-th level of nesting is supposed to be  a  naive  search).  These  two  conditions, 
together  with  the 2 N  recurrence  relations,  uniquely determine  the variables (20, z1,. . . z ~ )  and ( c t o ,  0 1 , .  . . , c t ~ ) .  The 
overall  scaling of the  quantum search  algorithm is O(-), i.e., it is governed by a0 (the  constant  that was denoted 
as ct in the previous  Sections).  Note that  this  entire  calculation is also valid for a classical nested  search  with several 
levels of nesting,  except for the  square  root.  Thus,  the  speedup of the  multi-nested  quantum search algorithm  remains 
a  square root if compared  with the corresponding  multi-nested  classical  search algorithm. 

We show in Table  I  the values of the 2,’s and an’s for an average  instance of maximum difficulty ( P  = P C )  of the 
graph coloring  problem ( k  = 2). The scaling coefficient Q O  decreases  with an increasing  nesting depth N ,  implying 
that  the speedup over an  unstructured search  improves by adding  further nesting levels. It  should be emphasized, 
however, that the  formalism used to  estimate  the scaling throughout  this  paper  cannot be used for a  large  nesting 
depth N .  Indeed, the  derivation of p ( i )  essentially neglects the  correlations between partial  solutions at  any level in 
the  tree which arise because of their  sharing  a  same  ancestor. Thus, our cost estimate for the  multi-nested  algorithm 
is only valid provided that N << p (the fact that a0 + 0 when N + 00 is meaningless). 
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V. CONCLUSION 

There is considerable  interest in the  possibility of using quantum  computers  to  speedup  the solution of NP-complete 
problems given the  importance of these  problems in complexity  theory  and  their  ubiquity amongst practical  compu- 
tational  applications. This paper  presents an  attempt in this direction by showing that nesting the  standard  quantum 
search algorithm results in a  faster  quantum  algorithm for structured search  problems  such as the  constraint  satis- 
faction  problem than heretofore  known. The key innovation is to cast  the  construction of solutions  of  the  problem 
as  a  quantum search  through  a  tree  of  partial  solutions, which narrows  a  subsequent quantum search at  the next 
level in the search  tree. The corresponding  computation  time scales exponentially,  but  with  a reduced coefficient that 
depends on the  number of nesting levels and  on  the  problem. The  speedup  that is achieved is a square root over the 
computation  time of a  corresponding  classical  nested  search  algorithm, which represents  therefore the  appropriate 
benchmark. Nevertheless, it is an exponential  improvement with respect to  the  time needed to solve the problem by 
use of the  standard  unstructured  quantum search algorithm. 
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NI Xn a n  I x1 a1 I x7 a7 I X3 a3 

1 
2 

0.618 1.000 1.000  0.618 

0.416 1.000 0.590  0.706 0.764  0.545 1 .ooo 0.416 3 
0.484  1 .ooo 0.718  0.674 1 .ooo 0.484 

TABLE I. Reduced  level x, on  the tree and corresponding scaling coefficient a ,  at  the  n-th level of nesting for the graph 
coloring  problem ( k  = 2) at ,O = P C .  The variable N denotes  the  nesting  depth,  and a0 governs the  scaling of the overall 
quantum (or classical) algorithm. 
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APPENDIX A: ASYMPTOTIC  PROBABILITY OF A  NODE  IN  A  SEARCH  TREE  TO  BE  GOOD 

Let. 11s clrrive an approximate  functional  form for p ( i ) ,  the  probability that a node at  level i in the search  tree is 
“good”.  The clerivatiou is complicated by the fact, that tile same problem instance  can be easy or hard  depending 
011 t h e  order in which the variables are assigned values. This is because i t  is possible that the  constraints  are such 
that a  particular variable  can only take  one possible value. If this variable is exanlined  early in the search process, 
the recognition that the value is highly constrained would permit a large  fraction of the  search  space t,o be avoided. 
Conversely, if this variable is examined  late in the search process, much of the  tree  might  already have been developed, 
resulting in relatively little  gain. However, the  algorithm described in Sec. I1 is a  naive algorithm  that  does not optimize 
the  order in which the variables  are assigned values. Thus, we can compute  the  probability p ( i )  for an average  tree 
having  a random variable  ordering. 

The simplest way to  do  this is to consider  a lattice of partial  solutions  rather  than  a tree of partial  solutions, because 
a  lattice of partial  solutions effectively encodes  all possible variable  orderings.  In particular,  the  ith level of a lattice 
of partial  solutions represents  all possible subsets of i variables out of p variables, assigned values in all possible 
combinations.  Thus, in a  lattice  there  are ( t ) b i  nodes at level i rather  than  the bi nodes in a  tree. So each level  of 
the  lattice encodes the  information  contained  in ( t )  different trees. As each constraint involves exactly k variables, 
and each variable  can be assigned any  one of its b allowed values, there  are  exactly bk “ground  instances” of each 
constraint. Moreover, as each constraint involves a different combination of k out of a possible p variables,  there 
can  be at  most ( t )  constraints. Each  ground  instance of a  constraint  may  be  “good” or “nogood”, so the  number of 
ground  instances that  are  “nogood”, < ,  must  be such that 0 5 < 5 bk (i). If < is small  the problem  typically  has  many 
solutions. If < is large  the  problem typically has few, or perhaps  no,  solutions. The exact  placement of the < nogoods 
is, of course, important in determining  the  their  ultimate  pruning power. 

Thus  to  estimate p ( i )  in an average tree, we calculate  the corresponding  probability that a  node in the  lattice (which 
implicitly  incorporates all trees) is “nogood”,  conditional on there  being < “nogoods” at level k .  For a  node at  level 
i of the  lattice  to  be “good” it  must  not  sit  above  any of the <  nog good^" at level k .  A node at  level i of the  lattice 
sits above (i) nodes at  level k .  Thus,  out of a total possible pool of 6“;) nodes at  level k 7  we must exclude (i) of 
them. However, we can pick the < nogoods from  amongst  the  remaining nodes in any way whatsoever. Hence the 
probability that a  node is “good” at  level i ,  given that there  are < “nogoods” at  level k ,  is given by the  ratio of the 
number of ways to pick the “nogoods”  such that a  particular  node at  level i is “good”, to  the  total  number of ways 
of picking the < “nogoods”. As a  consequence, the  probability for a  partial  solution to be  good at  level i in a  tree of 
height p and  branching  ratio b can be approximated as [17,18,20] 

where k is the size of the  constraint  (i.e.,  number of variables involved in a  constraint)  and < is the  number of “nogood” 
ground  instances (or number of constraints).  This  approximation essentially relies on  the  assumption  that  the  partial 
solutions at  a given level are  uncorrelated. 

Now, we are  interested in obtaining  an  asymptotic expression for p ( i )  for large  problems,  i.e., when the  number of 
variables p + co. Recall that  to scale a  constraint  satisfaction problem up, however, it is not sufficient to increase 
only p .  In addition, we ought  also to increase the  number of constraints so as  to preserve the “constrainedness-per- 
variable”, p = < / p .  Thus, when we consider  scaling our problems up, as we must  do to assess the  asymptotic behavior 
of the classical and  quantum  structured search algorithms, we have p + co and scale < = p p ,  keeping p ,  b and k 
constant.6 We  now make  the  assumption that << b k ( i )  and < << b k ( i )  - ( i ) ,  which is justified  in the  asymptotic 
regime. Using Stirling  formula, we have 

6For graph coloring, this  scaling  assumption  corresponds to adding more edges to the graph as we allow the number of nodes 
to go to infinity,  while  simultaneously keeping the average  connectivity (number of edges per node)  and the number of colors 
fixed. 



(.42) 

for large N and N ,  provided that Ii <( hd ,  N .  This allows us to reexpress Eq. (til) as 

Now, assuming that k << i and k << p ,  and reusing Eq. (A2), we have 

p ( i )  = (1 - b-k (d) ‘) E 

for large i and p .  Finally,  assuming for simplicity that bk >> 1 and ( i / ~ ) ~  << 1, we obtain 

p ( i )  = b -/l($) 
where p = < / p  measures the difficulty of the problem and PC = bk log(b) is the  critical value around which the problem 
is the  most difficult. 

APPENDIX B: AVERAGE-CASE  COMPLEXITY  OF  THE  CLASSICAL  SEARCH 

Plugging  Eq. (A5) into  Eq. (7),  we obtain  an  approximate expression of the classical computation  time needed to 
solve an average  instance  with fixed p 

where the  denominator is simply  the expected  number of solutions.  Let  us now find the level i where it is optimum 
to  “cut”  the  tree.  The value of i which minimizes Tc(i) corresponds, for large p ,  to  the  situation where both  terms 
in the  numerator grow with  the  same power of 6, i.e.,  the  solution of the  equation i = p - ~ ( p / p , ) ( i / p ) ~ .  Then, one 
can show that  the  computation  time  approximately scales as 

where the scaling coefficient a = x with x = i / p ,  the  fraction of the height at which one  cuts  the  tree, being the 
solution of Eq. (40) such that 0 5 I 5 1.  For problems of maximum difficulty ( p  = P C ) ,  i.e.,  problems which admit a 
single  solution  on  average,  the  classicai  time  scales  thus as 

for  a  search  space of dimension d = bP. This represents  a  significant  improvement over a classical search that does 
not  exploit  the  structure,  i.e., T, - O(d) .  

APPENDIX C: EXACT  EXPRESSION  FOR  THE  ITERATED  SEARCH  OPERATOR  IN  TERMS  OF 
CHEBYSHEV  POLYNOMIALS 

The unstructured  quantum search  algorithm is based on iterating n times  the  operator 

= ( -2u’ 1 ) 1 - 4142 2u 
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wllcre u E ( t l U l . s )  is a c-number  (with IuI 5 1) .  The  iterated  operator can be written  exactly as 

where U,(cosO) = sin((n+  l)O)/sin(O) is the Chebyshev  polynomialof  the second kind. By making use of Zio(x) = 1, 
Ul(x)  = 2 x ,  and U ~ ( . C )  = 4 x 2  - 1, it is easy to check that, for n = 1, Eq.  (C2) 

is indeed  consistent  with Eq. (C1). Now, using the recursion formula for Chebyshev  polynomials, 

Un+l (x )  - 2 2 U n ( ~ )  + Un-l(z) = 0 

we can verify easily that  the  product of  Q and Q", as defined by Eq.  (C2), yields Qn+'. Indeed, 

- - Qn+l (C5) 

We can use Eq.  (C2)  to  calculate  the  exact  amplitude of the  target  state It) after n iterations,  that is 

Equivalently, we can  write 

by using the recursion  formula 

where T,(cos 8) = cos(n8) is the Chebyshev  polynomial of the first  kind.  Note that,  at  the  limit of 1 ~ 1  << 1, it is easy 
to show that T 2 n ( l ~ I )  N (-1)" cos(2n1u1) and  U2n-l(lul) N -(-1)" sin(2nlu(), so that we obtain 

(t1Q"Uls) E u cos(2nlul) + - sin(2nlul) 
U 

(C9) I 4  
in agreement  with  Eq. (13). Thus,  the second term in Eq. (C9)  mainly  contributes  to  the  amplitude of the  target 
state It) at  the  limit of small IuI. 
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